571 research outputs found

    Holographic bulk viscosity: GPR vs EO

    Get PDF
    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.Comment: 21 pages, 2 figure

    Continuous Hawking-Page transitions in Einstein-scalar gravity

    Get PDF
    We investigate continuous Hawking-Page transitions in Einstein's gravity coupled to a scalar field with an arbitrary potential in the weak gravity limit. We show that this is only possible in a singular limit where the black-hole horizon marginally traps a curvature singularity. Depending on the subleading terms in the potential, a rich variety of continuous phase transitions arise. Our examples include second and higher order, including the Berezinskii-Kosterlitz-Thouless type. In the case when the scalar is dilaton, the condition for a continuous phase transition lead to (asymptotically) linear-dilaton background. We obtain the scaling laws of thermodynamic functions, as well as the viscosity coefficients near the transition. In the limit of weak gravitational interactions, the bulk viscosity asymptotes to a universal constant, independent of the details of the scalar potential. As a byproduct of our analysis we obtain a one-parameter family of kink solutions in arbitrary dimension d that interpolate between AdS near the boundary and linear-dilaton background in the deep interior. The continuous Hawking-Page transitions found here serve as holographic models for normal-to superfluid transitions.Comment: 35 pages + appendice

    Holographic spin liquids and Lovelock Chern-Simons gravity

    Get PDF
    We explore the role of torsion as source of spin current in strongly interacting conformal fluids using holography. We establish the constitutive relations of the basic hydrodynamic variables, the energy-momentum tensor and the spin current based on the classification of the spin sources in irreducible Lorentz representations. The fluids we consider are assumed to be described by the five dimensional Lovelock-Chern-Simons gravity with independent vielbein and spin connection. We construct a hydrodynamic expansion that involves the stress tensor and the spin current and compute the corresponding one-point functions holographically. As a byproduct we find a class of interesting analytic solutions to the Lovelock-Chern-Simons gravity, including blackholes, by mapping the equations of motion into non-linear algebraic constraints for the sources. We also derive a Lee-Wald entropy formula for these blackholes in Chern-Simons theories with torsion. The blackhole solutions determine the thermodynamic potentials and the hydrodynamic constitutive relations in the corresponding fluid on the boundary. We observe novel spin induced transport in these holographic models: a dynamical version of the Barnett effect where vorticity generates a spin current and anomalous vortical transport transverse to a vector-like spin source.Comment: 52 page

    Topology change in commuting saddles of thermal N=4 SYM theory

    Get PDF
    We study the large N saddle points of weakly coupled N=4 super Yang-Mills theory on S^1 x S^3 that are described by a commuting matrix model for the seven scalar fields {A_0, \Phi_J}. We show that at temperatures below the Hagedorn/`deconfinement' transition the joint eigenvalue distribution is S^1 x S^5. At high temperatures T >> 1/R_{S^3}, the eigenvalues form an ellipsoid with topology S^6. We show how the deconfinement transition realises the topology change S^1 x S^5 --> S^6. Furthermore, we find compelling evidence that when the temperature is increased to T = 1/(\sqrt\lambda R_{S^3}) the saddle with S^6 topology changes continuously to one with S^5 topology in a new second order quantum phase transition occurring in these saddles.Comment: 1+40 pages, 6 figures. v2: Title changed. Status of commuting saddles clarified: New high T phase transition claimed in the commuting sector only, not in the full theor

    On the Temperature Dependence of the Shear Viscosity and Holography

    Get PDF
    We examine the structure of the shear viscosity to entropy density ratio eta/s in holographic theories of gravity coupled to a scalar field, in the presence of higher derivative corrections. Thanks to a non-trivial scalar field profile, eta/s in this setup generically runs as a function of temperature. In particular, its temperature behavior is dictated by the shape of the scalar potential and of the scalar couplings to the higher derivative terms. We consider a number of dilatonic setups, but focus mostly on phenomenological models that are QCD-like. We determine the geometric conditions needed to identify local and global minima for eta/s as a function of temperature, which translate to restrictions on the signs and ranges of the higher derivative couplings. Finally, such restrictions lead to an holographic argument for the existence of a global minimum for eta/s in these models, at or above the deconfinement transition.Comment: references adde

    Scalar Spectrum from a Dynamical Gravity/Gauge model

    Full text link
    We show that a Dynamical AdS/QCD model is able to reproduce the linear Regge trajectories for the light-flavor sector of mesons with high spin and also for the scalar and pseudoscalar ones. In addition the model has confinement by the Wilson loop criteria and a mass gap. We also calculate the decay amplitude of scalars into two pion in good agreement to the available experimental data.Comment: Presented in the 4th International Workshop on Astronomy and Relativistic Astrophysic

    Cholesterol content and fatty acid composition of most consumed turkish hard and soft cheeses

    Get PDF
    Cholesterol content and fatty acid composition of 29 different most popular hard (Tulum, Teneke Tulum, aged Kashar, and fresh Kashar cheeses) and soft cheese (White Pickled cheeses) samples from the markets of Izmir in Turkey were determined by gas chromatography. Cholesterol content of hard and soft cheeses ranged from 46.47 to 138.99 mg/100 g fat. Relative to the mean cholesterol values, the highest cholesterol content was found in fresh Kashar cheese. The fatty acid composition is quite similar in all samples. As concerns the saturated fatty acids, the most abundant in the cheeses investigated were palmitic (C16:0), stearic (C18:0), and myristic acids (C14:0). Palmitic acid levels were found to be the highest of the saturated fatty acid in all samples. Oleic acid content (5.93-29.38 mg/100 g fatty acids) in all cheeses was considerable higher than those of other unsaturated fatty acids. No specific trend or correlation between cholesterol and individual fatty acids was observed

    Unconscious reasons: Habermas, Foucault, and psychoanalysis

    Get PDF
    corecore